Your browser is no longer supported

For the best possible experience using our website we recommend you upgrade to a newer version or another browser.

Your browser appears to have cookies disabled. For the best experience of this website, please enable cookies in your browser

We'll assume we have your consent to use cookies, for example so you won't need to log in each time you visit our site.
Learn more

Italian record breaker

In November the Italian government will vote on whether to go ahead with construction of the world's longest suspension bridge. Andrew Mylius looks at the deck design innovations that have made the crossing feasible.

Why read this

A major rethink of aerodynamic performance makes an unprecedented 3.3km span possible.

Deck mass has been pared down by 20% over conventional suspension bridge decks.

A decision on whether construction will go ahead is expected later this year.

Cut off from the toe of Italy by the 3km wide Messina Strait, Sicily is visibly and symbolically beyond the reach of Rome. Its isolation has stifled economic development, forcing its shadier entrepreneurs into well-established but unorthodox family businesses.

Siciliy's days as an impoverished Mafia haven could be numbered, though. In November the Italian government will be voting on whether to give the go ahead for construction of a 5km suspension bridge linking the island with the province of Calabria on the mainland.

Private sector consortium Stretto di Messina has been pushing to realise the project for 20 years; it was first proposed over three decades ago. The European Union has designated a fixed link between Italy and Sicily part of its trans-European transport network, designed to foster European political, social and economic integration. And parliament approved the use of private finance for construction of the ItL7,100bn (£2.3bn) project 'in principle' in 1998. It is not so much a question of whether the Messina Bridge will be built as when, predicts Stretto di Messina senior engineer Enzo Vulla.

Spanning between the two land masses presents a major engineering challenge. '500m offshore you are in over 100m of water, ' notes leader of the Messina Bridge design team and partner in UK consultant Brown Beech, William Brown. A multispan structure would be out of the question due to the extraordinary technical demands and cost of building foundations on the seabed. Meanwhile, a single span suspension bridge on the same scale as Japan's Akashi Kaikyo - currently the world record holder with a main span of 1,991m - would still leave the Messina crossing with its feet in unfeasibly deep water.

Messina's towers will therefore be founded on dry land. This means a main span of 3.3km, over 1,300m beyond the current record - and a dramatic rethink of deck design. 'Messina is about controlling the deck's aerodynamic behaviour by shape rather than brute strength, ' comments Brown.

Self-destruction of the Tacoma Narrows bridge in 1940 as a result of wind induced oscillation, or 'flutter', brought about a revolution in the design of suspension bridge decks. The first Severn crossing, designed in the 1950s by Freeman Fox (Brown, as a new employee, was closely involved), used what has become the universal standard for suspension bridge decks, the aerofoil shaped steel box girder.

Its aerodynamic section 'flies' through cross-winds, reducing the turbulence that contributes to oscillation. Much of the box girder's performance, however, relies on its inherent stiffness and resistance to bending and twisting moments.

Despite impressive performance characteristics, the aerodynamic girder has been pushed to its limits. As spans get longer increased stiffness and thus added depth is called for - the Humber Bridge, with a main span of 1,400m, required 4.5m deck depth compared to 3m depth on the 1,000m Severn Bridge. And as deck mass increases so too does the mass of a bridge's cables and towers.

'Of course, the aim is to keep the dead weight of the bridge as low as possible, ' points out Brown.

To avoid turning Messina into a colossus, with correspondingly colossal cost, Brown has deployed an aerodynamic phenomenon he discovered while playing in a wind tunnel three decades ago.

'People talk about flutter, but I had never seen and experimented with it, ' he recalls. Having set up a flutter model in the wind tunnel he then cut out longitudinal slots from the deck, effectively leaving a series of parallel lanes. On initiating air flow once again, 'the surprise was that I couldn't get the model to flutter however fast I ran the fans'.

Brown calculates that the proportion of void to solid surface should be roughly a third. 'As you increase the width of the gap, improvements in stability tail off to the point where no extra benefit can be gained.

There's no formula to working the precise ratio out, ' he says.

'It's a case of suck it and see.'

Nor is there any scientific explanation of why slotting a bridge deck should so dramatically improve performance. But Brown offers a theory: Wind passing underneath the deck is able to escape upward through the voids, reducing the net lifting force. Meanwhile, the parallel strips present not one leading edge but several. Lift on the leading edge of a conventional deck produces a powerful rotating force around its centre line.

While surfaces on the windward side of the centre line in a 'multi strip' configuration will still produce lift, it will be partially counterbalanced by lift on surfaces to the leeward side. Overall, reasons Brown, rotational and thus torsional force is reduced.

Messina is to provide both a road and a rail crossing. Two decks, 13.2m wide, carrying three lanes of traffic apiece will flank a 9.4m wide central deck supporting twin rail track. The decks are separated by an 8m wide grillage - for the purpose of aerodynamics, effectively empty space. A further 4.2m of grillage cantilevered out from the edges of the deck gives it a total width of 60.4m.

The grillages are designed to act as emergency lanes, giving Messina a total theoretical carrying capacity for road vehicles of 12 lanes. It has a maximum traffic capacity of 4,500 vehicles/h in each direction and more than 200 trains per day. Yet deck depth is just 2.25m. 'That's roughly half the depth of decks used on conventional single bridges, ' notes Brown. Total weight per metre of deck is only 23.4t. 'We've created stability and at the right weight.'

Stiffness has been gained from the use of curved box sections which are inherently stronger than the more usual angular profiles, not to mention more 'slippery'. Compared to the Severn bridge's drag co-efficient of 0.6 or more, Messina measures 0.4.

Still further stiffening is provided by 4.5m deep cross beams at 3m centres. It is calculated the deck will remain stable in wind speeds in excess of 270km/h, though maximum lateral deflection of 9.9m can be accommodated. Meanwhile, the structure is designed to cope with a 0.65G seizmic event.

'Efficiencies gained in performance of the deck have contributed to making other parts of the structure lean and economical. Brown has elected to keep costs down by designing relatively short, 370m high steel towers, at least in relation to the length of the main span. The steel structures are 370m tall.

This gives Messina a shallow sag to span ratio of 1:11. Suspension is to be provided by two pairs of 1.24m diameter galvanised steel cables - heavier and pricier than a saggier, lowerstressed configuration would require, Brown concedes. But he counters: 'Increasing sag would also increase the tendency to flutter. It would enable us to use lighter cable but would result in greater deflection. And we would have to have bigger towers, or course. That would make the seizmic risk far greater.'


Crash course

Italian drivers speed along on the right hand side of the road, but trains run on the left. With both road and rail present on the Messina Bridge there has been concern about the potential consequences of a 'cross-modal' crash. The combined speed of a train and car travelling in opposite directions could be 200km/h or more.

To reduce the hazard, the design team has switched traffic flows from right to left, though once the carriageways are crossed normal lane discipline will apply. As a result, slow vehicles will occupy the lanes closest to the rail track and run in the same direction as trains. And drivers travelling at speed will be in lanes at the bridge's outside edges where they pose least danger.

Brown notes the right-left switch also suits the tracking and suspension of Italian cars, which are set up for the camber found on Continental highways. On Messina, the road lanes slope towards the bridge's centre line - a reverse camber. There were fears that without crossing carriageways cars would have a tendency to veer towards the rail line.

Have your say

You must sign in to make a comment

Please remember that the submission of any material is governed by our Terms and Conditions and by submitting material you confirm your agreement to these Terms and Conditions. Please note comments made online may also be published in the print edition of New Civil Engineer. Links may be included in your comments but HTML is not permitted.