Your browser is no longer supported

For the best possible experience using our website we recommend you upgrade to a newer version or another browser.

Your browser appears to have cookies disabled. For the best experience of this website, please enable cookies in your browser

We'll assume we have your consent to use cookies, for example so you won't need to log in each time you visit our site.
Learn more

Alaskan Highway tunnel: Rescue package

Breakdown of a tunnel boring machine mid-drive is every project’s worst nightmare. NCE takes a look at the recovery work for the machine on the Alaskan Highway Tunnel in Seattle, in the western United States.

Plans to put the United States city of Seattle’s Alaskan Highway Viaduct, underground will replace an ageing structure and reclaim the ground level for residents. The concept of removing this barrier between the city and the sea is something that promoters of the Hammersmith Flyunder have used to support their plans.

While the initiative may seem the perfect solution, the realities on site have been far more difficult, with breakdown of the tunnel boring machine (TBM), named Bertha, at the end of 2013. Work to lift the cutterhead to the surface has just been completed and design and build contractor Seattle Tunnel Partners (STP) - formed from a joint venture of Dragados and Tutor Perini - expects to restart tunnelling
in July.

Alaskan Highway Tunnel

Big lift: A huge gantry crane raised the damaged cutterhead from the tunnel shaft

The client for the US$1.14bn (£737M) project is Washington State Department of Transport (WSDOT) and the project has been planned for a long time (see box).

Tunnelling started in June 2013 but was halted after less than six months and 300m of progress because of overheating problems with the Hitachi Zosen TBM. Initial interventions revealed damage to the machine’s seal system and contamination within the main bearing but repairs could not be undertaken insitu. The result was the need for a rescue shaft to bring the cutterhead to the surface for repairs.
In May last year preparations started with utility diversions and jet grouting to stabilise the ground around the site, before a grout wall was installed behind the TBM’s shield.

Bertha breakthrough

Sealed shaft: Ground water had to be lowered before the access shaft could be excavated

Secant piling was then used to form a 24m diameter, 36m deep shaft to access the TBM which was 18m below ground level.

Groundwater was lowered before the shaft was excavated and Bertha was restarted to tunnel into the shaft and onto a concrete cradle last February.

Mammoet was contracted to crane the 1,700t cutter head out of the shaft and place it on preconstructed repair supports. The lift was successfully completed in April.

Alaskan Highway Tunnel

Shaft construction

With the cutterhead now on the surface, STP is working with Hitachi Zosen to replace it with a more robust system, install enhanced monitoring systems and add new steel sections to strengthen the TBM and accommodate the new seal system.

Current forecasts from STP suggest that, once restarted, the tunnelling work could be completed within 12 months and the fit out work will take a further two years.

At the start of work in 2013, STP had originally planned to complete the tunnelling work by the end of 2015 which was ahead of WSDOT’s expectations of November 2016.

So as long as the rest of the work goes without a hitch, the end date of delivery may be later than STP hoped but still within WSDOT’s timeframe.

Who pays for the cost of the additional work still needs to be resolved.

STP’s request for £81M in compensation from WSDOT was rejected on the grounds that it had no contractual merit, but STP may still decide to take the issue to court - a decision that could take longer to resolve than the completion of tunnelling.


Project history

Deterioration of the existing 1950s Alaskan Highway Viaduct (pictured right) had already been recorded in the late 1990s, but the 2001 Nisqually earthquake further weakened the structure.

The viaduct stands on fill material placed behind a seawall that has also been weakened by age. This has led to concerns about the failure of both structures in the event of liquefaction during another seismic event.

Alaskan Highway viaduct

Ageing: Existing viaduct

Weight restrictions and automatic closure systems in the event of another earthquake were placed on the viaduct in 2001 while a replacement plan and funding was sought. The solution is the tunneled option and central and local government funding will be supplemented by tolls levied on the new tunnel.

Part of the viaduct was demolished in 2011 and replaced with a bypass to reduce the risk and enable the tunnelling work for the 3.2km long twin-deck tunnel to be planned.

Have your say

You must sign in to make a comment

Please remember that the submission of any material is governed by our Terms and Conditions and by submitting material you confirm your agreement to these Terms and Conditions. Please note comments made online may also be published in the print edition of New Civil Engineer. Links may be included in your comments but HTML is not permitted.